A unification of Geraghty type and Ciric type fixed point theorems

نویسندگان

چکیده

In the framework of metric spaces, we introduce concept Geraghty-Ciric type contractions and show existence uniqueness fixed point such mappings. This result improves unifies those obtained by Geraghty (Proc. Amer. Math. Soc. 40, 604-608 (1973)) Ciric 45, 267-273, (1974)). Several technical lemmas are employed to ensure that a Picard sequence is Cauchy sequence. addition, two illustrative examples provided indicate validity results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate fixed point theorems for Geraghty-contractions

The purpose of this paper is to obtain necessary and suffcient conditionsfor existence approximate fixed point on Geraghty-contraction. In this paper,denitions of approximate -pair fixed point for two maps Tα , Sα and theirdiameters are given in a metric space.

متن کامل

Some common fixed point theorems for Gregus type mappings

In this paper, sufficient conditions for the existence of common fixed points for a compatible pair of self maps of Gregustype in the framework of convex metric spaces have been obtained. Also, established the existence of common fixed points for a pair of compatible mappings of type (B) and consequently for compatible mappings of type (A). The proved results generalize and extend some of the w...

متن کامل

Edelstein Type Fixed Point Theorems

Recently, Suzuki [Nonlinear Anal. 71 (2009), no. 11, 5313–5317.] published a paper on which Edelstein’s fixed theorem was generalized. In this manuscript, we give some theorems which are the generalization of the fixed theorem of Suzuki’s Theorems and thus Edelstein’s result [J. London Math. Soc. 37 (1962), 74-79].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2022

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2208605l